

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Routes 1.13 documentation

Routes Documentation

Routes is a Python re-implementation of the Rails routes system for mapping URLs to application actions, and conversely to generate URLs. Routes makes it easy to create pretty and concise URLs that are RESTful with little effort.

Routes allows conditional matching based on domain, cookies, HTTP method, or a custom function. Sub-domain support is built in. Routes comes with an extensive unit test suite.

Current features:

	Sophisticated route lookup and URL generation

	Named routes

	Redirect routes

	Wildcard paths before and after static parts

	Sub-domain support built-in

	Conditional matching based on domain, cookies, HTTP method (RESTful), and more

	Easily extensible utilizing custom condition functions and route generation
functions

	Extensive unit tests

Installing

Routes can be easily installed with pip or easy_install:

$ easy_install routes

Example

Setup a mapper
from routes import Mapper
map = Mapper()
map.connect(None, "/error/{action}/{id}", controller="error")
map.connect("home", "/", controller="main", action="index")

Match a URL, returns a dict or None if no match
result = map.match('/error/myapp/4')
result == {'controller': 'error', 'action': 'myapp', 'id': '4'}

Source

The routes source can be found on GitHub [http://github.com/bbangert/routes].

Bugs/Support

Bug’s can be reported on the `github issue tracker
<https://github.com/bbangert/routes/issues`_. Note that routes is in maintenance
mode so bug reports are unlikely to be worked on, pull requests will be applied
if submitted with tests.

Documentation

	Introduction

	Setting up routes
	Requirements

	Magic path_info

	Conditions

	Wildcard routes

	Format extensions

	Submappers

	Submapper helpers

	Adding routes from a nested application

	Generation
	Generating routes based on the current URL

	Generation-only routes (aka. static routes)

	Filter functions

	Generating URLs with subdomains

	RESTful services
	Resource options

	Unicode, Redirects, and More
	Unicode

	Redirect Routes

	Printing

	Introspection

	Other

	Backward compatibility

	Routes Changelog
	Release 2.1 (January 17, 2015)

	Release 2.0 (November 17, 2013)

	Release 1.13 (March 12, 2012)

	Release 1.12.3 (June 5, 2010)

	Release 1.12.2 (May 5, 2010)

	Release 1.12.1 (March 11, 2010)

	Release 1.12 (February 28, 2010)

	Release 1.11 (September 28, 2009)

	Release 1.10.3 (February 8, 2009)

	Release 1.10.2 (January 11, 2009)

	Release 1.10.1 (September 27, 2008)

	Release 1.10 (September 24, 2008)

	Release 1.9.2 (July 8, 2008)

	Release 1.9.1 (June 28, 2008)

	Release 1.9 (June 12, 2008)

	Release 1.8 (March 28, 2008)

	Release 1.7.3 (May 28th, 2008)

	Release 1.7.2 (Feb. 27th, 2008)

	Release 1.7.1 (Nov. 16th, 2007)

	Release 1.7 (June 8th, 2007)

	Release 1.6.3 (April 10th, 2007)

	Release 1.6.2 (Jan. 5, 2007)

	Release 1.6.1 (Dec. 29, 2006)

	Release 1.6 (Dec. 14th, 2006)

	Release 1.5.2 (Oct. 16th, 2006)

	Release 1.5.1 (Oct. 4th, 2006)

	Release 1.5 (Sept. 19th, 2006)

	Release 1.4.1 (Sept. 6th, 2006)

	Release 1.4 (July 21, 2006)

	Release 1.3.2 (April 30th, 2006)

	Release 1.3.1 (April 4th, 2006)

	Release 1.3 (Feb. 25th, 2006)

	Release 1.2 (Feb. 17th, 2006)

	Release 1.1 (Jan. 13th, 2006)

	Release 1.0.2 (Dec. 30th, 2005)

	Release 1.0.1 (Dec. 18th, 2005)

	Release 1.0 (Nov. 21st, 2005)

	Glossary

	Porting Routes to a WSGI Web Framework

Indices and tables

	Index

	Module Index

	Glossary

Module Listing

	Routes Modules
	routes – Routes Common Classes and Functions

	routes.mapper – Mapper and Sub-Mapper

	routes.route – Route

	routes.middleware – Routes WSGI Middleware

	routes.util – URL Generator and utility functions

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Routes 1.13 documentation

Introduction

Routes tackles an interesting problem that comes up frequently in web
development, how do you map URLs to your application’s actions? That is, how
do you say that this should be accessed as “/blog/2008/01/08”, and “/login”
should do that? Many web frameworks have a fixed dispatching system; e.g.,
“/A/B/C” means to read file “C” in directory “B”, or to call method “C” of
class “B” in module “A.B”. These work fine until you need to refactor your code
and realize that moving a method changes its public URL and invalidates users’
bookmarks. Likewise, if you want to reorganize your URLs and make a section
into a subsection, you have to change your carefully-tested logic code.

Routes takes a different approach. You determine your URL hierarchy and and
actions separately, and then link them together in whichever ways you decide.
If you change your mind about a particular URL, just change one line in your
route map and never touch your action logic. You can even have multiple URLs
pointing to the same action; e.g., to support legacy bookmarks. Routes was
originally inspired by the dispatcher in Ruby on Rails but has since diverged.

Routes is the primary dispatching system in the Pylons web framework, and an
optional choice in CherryPy. It can be added to any
framework without much fuss, and used for an entire site or a URL subtree.
It can also forward subtrees to other dispatching systems, which is how
TurboGears 2 is implemented on top of Pylons.

Current features:

	Sophisticated route lookup and URL generation

	Named routes

	Redirect routes

	Wildcard paths before and after static parts

	Sub-domain support built-in

	Conditional matching based on domain, cookies, HTTP method (RESTful), and more

	Easily extensible utilizing custom condition functions and route generation
functions

	Extensive unit tests

Buzzword compliance: REST, DRY.

If you’re new to Routes or have not read the Routes 1.11 manual before, we
recommend reading the Glossary before continuing.

This manual is written from the user’s perspective: how to use Routes in a
framework that already supports it. The Porting
manual describes how to add Routes support to a new framework.

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Routes 1.13 documentation

Setting up routes

It is assumed that you are using a framework that has preconfigured Routes for
you. In Pylons, you define your routes in the make_map function in your
myapp/config/routing.py module. Here is a typical configuration:

	1
2
3
4
5
6
7

	from routes import Mapper
map = Mapper()
map.connect(None, "/error/{action}/{id}", controller="error")
map.connect("home", "/", controller="main", action="index")
ADD CUSTOM ROUTES HERE
map.connect(None, "/{controller}/{action}")
map.connect(None, "/{controller}/{action}/{id}")

Lines 1 and 2 create a mapper.

Line 3 matches any three-component route that starts with “/error”, and sets
the “controller” variable to a constant, so that a URL
“/error/images/arrow.jpg” would produce:

{"controller": "error", "action": "images", "id": "arrow.jpg"}

Line 4 matches the single URL “/”, and sets both the controller and action to
constants. It also has a route name “home”, which can be used in generation.
(The other routes have None instead of a name, so they don’t have names.
It’s recommended to name all routes that may be used in generation, but it’s
not necessary to name other routes.)

Line 6 matches any two-component URL, and line 7 matches any 3-component URL.
These are used as catchall routes if we’re too lazy to define a separate route
for every action. If you have defined a route for every action, you can
delete these two routes.

Note that a URL “/error/images/arrow.jpg” could match both line 3 and line 7.
The mapper resolves this by trying routes in the order defined, so this URL
would match line 3.

If no routes match the URL, the mapper returns a “match failed” condition,
which is seen in Pylons as HTTP 404 “Not Found”.

Here are some more examples of valid routes:

m.connect("/feeds/{category}/atom.xml", controller="feeds", action="atom")
m.connect("history", "/archives/by_eon/{century}", controller="archives",
 action="aggregate")
m.connect("article", "/article/{section}/{slug}/{page}.html",
 controller="article", action="view")

Extra variables may be any Python type, not just strings. However, if the
route is used in generation, str() will be called on the value unless
the generation call specifies an overriding value.

Other argument syntaxes are allowed for compatibility with earlier versions of
Routes. These are described in the Backward Compatibility section.

Route paths should always begin with a slash (“/”). Earlier versions of
Routes allowed slashless paths, but their behavior now is undefined.

Requirements

It’s possible to restrict a path variable to a regular expression; e.g., to
match only a numeric component or a restricted choice of words. There are two
syntaxes for this: inline and the requirements argument. An inline
requirement looks like this:

map.connect(R"/blog/{id:\d+}")
map.connect(R"/download/{platform:windows|mac}/{filename}")

This matches “/blog/123” but not “/blog/12A”. The equivalent requirements
syntax is:

map.connect("/blog/{id}", requirements={"id": R"\d+"}
map.connect("/download/{platform}/{filename}",
 requirements={"platform": R"windows|mac"})

Note the use of raw string syntax (R"") for regexes which might contain
backslashes. Without the R you’d have to double every backslash.

Another example:

m.connect("archives/{year}/{month}/{day}", controller="archives",
 action="view", year=2004,
 requirements=dict(year=R"\d{2,4}", month=R"\d{1,2}"))

The inline syntax was added in Routes (XXX 1.10?? not in changelog). Previous
versions had only the requirements argument. Two advantages of the
requirements argument are that if you have several variables with identical
requirements, you can set one variable or even the entire argument to a
global:

NUMERIC = R"\d+"
map.connect(..., requirements={"id": NUMERIC})

ARTICLE_REQS = {"year": R"\d\d\d\d", "month": R"\d\d", "day": R"\d\d"}
map.connect(..., requirements=ARTICLE_REQS)

Because the argument requirements is reserved, you can’t define a routing
variable by that name.

Magic path_info

If the “path_info” variable is used at the end of the URL, Routes moves
everything preceding it into the “SCRIPT_NAME” environment variable. This is
useful when delegating to another WSGI application that does its own routing:
the subapplication will route on the remainder of the URL rather than the
entire URL. You still
need the ”:.*” requirement to capture the following URL components into the
variable.

map.connect(None, "/cards/{path_info:.*}",
 controller="main", action="cards")
Incoming URL "/cards/diamonds/4.png"
=> {"controller": "main", action: "cards", "path_info": "/diamonds/4.png"}
Second WSGI application sees:
SCRIPT_NAME="/cards" PATH_INFO="/diamonds/4.png"

This route does not match “/cards” because it requires a following slash.
Add another route to get around this:

map.connect("cards", "/cards", controller="main", action="cards",
 path_info="/")

Tip

You may think you can combine the two with the following route:

map.connect("cards", "/cards{path_info:.*}",
 controller="main", action="cards")

There are two problems with this, however. One, it would also match
“/cardshark”. Two, Routes 1.10 has a bug: it forgets to take
the suffix off the SCRIPT_NAME.

A future version of Routes may delegate directly to WSGI applications, but for
now this must be done in the framework. In Pylons, you can do this in a
controller action as follows:

from paste.fileapp import DirectoryApp
def cards(self, environ, start_response):
 app = DirectoryApp("/cards-directory")
 return app(environ, start_response)

Or create a fake controller module with a __controller__ variable set to
the WSGI application:

from paste.fileapp import DirectoryApp
__controller__ = DirectoryApp("/cards-directory")

Conditions

Conditions impose additional constraints on what kinds of requests can match.
The conditions argument is a dict with up to three keys:

method

A list of uppercase HTTP methods. The request must be one of the
listed methods.

sub_domain

Can be a list of subdomains, True, False, or None. If a
list, the request must be for one of the specified subdomains. If
True, the request must contain a subdomain but it can be anything.
If False or None, do not match if there’s a subdomain.

New in Routes 1.10: ``False`` and ``None`` values.

function

A function that evaluates the request. Its signature must be
func(environ, match_dict) => bool. It should return true if the
match is successful or false otherwise. The first arg is the WSGI
environment; the second is the routing variables that would be
returned if the match succeeds. The function can modify match_dict
in place to affect which variables are returned. This allows a wide
range of transformations.

Examples:

Match only if the HTTP method is "GET" or "HEAD".
m.connect("/user/list", controller="user", action="list",
 conditions=dict(method=["GET", "HEAD"]))

A sub-domain should be present.
m.connect("/", controller="user", action="home",
 conditions=dict(sub_domain=True))

Sub-domain should be either "fred" or "george".
m.connect("/", controller="user", action="home",
 conditions=dict(sub_domain=["fred", "george"]))

Put the referrer into the resulting match dictionary.
This function always returns true, so it never prevents the match
from succeeding.
def referals(environ, result):
 result["referer"] = environ.get("HTTP_REFERER")
 return True
m.connect("/{controller}/{action}/{id}",
 conditions=dict(function=referals))

Wildcard routes

By default, path variables do not match a slash. This ensures that each
variable will match exactly one component. You can use requirements to
override this:

map.connect("/static/{filename:.*?}")

This matches “/static/foo.jpg”, “/static/bar/foo.jpg”, etc.

Beware that careless regexes may eat the entire rest of the URL and cause
components to the right of it not to match:

OK because the following component is static and the regex has a "?".
map.connect("/static/{filename:.*?}/download")

The lesson is to always test wildcard patterns.

Format extensions

A path component of {.format} will match an optional format extension (e.g.
”.html” or ”.json”), setting the format variable to the part after the ”.”
(e.g. “html” or “json”) if there is one, or to None otherwise. For example:

map.connect('/entries/{id}{.format}')

will match “/entries/1” and “/entries/1.mp3”. You can use requirements to
limit which extensions will match, for example:

map.connect('/entries/{id:\d+}{.format:json}')

will match “/entries/1” and “/entries/1.json” but not “/entries/1.mp3”.

As with wildcard routes, it’s important to understand and test this. Without
the \d+ requirement on the id variable above, “/entries/1.mp3” would match
successfully, with the id variable capturing “1.mp3”.

New in Routes 1.12.

Submappers

A submapper lets you add several similar routes
without having to repeat identical keyword arguments. There are two syntaxes,
one using a Python with block, and the other avoiding it.

Using 'with'
with map.submapper(controller="home") as m:
 m.connect("home", "/", action="splash")
 m.connect("index", "/index", action="index")

Not using 'with'
m = map.submapper(controller="home")
m.connect("home", "/", action="splash")
m.connect("index", "/index", action="index")

Both of these syntaxes create the following routes::
"/" => {"controller": "home", action="splash"}
"/index" => {"controller": "home", action="index"}

You can also specify a common path prefix for your routes:

with map.submapper(path_prefix="/admin", controller="admin") as m:
 m.connect("admin_users", "/users", action="users")
 m.connect("admin_databases", "/databases", action="databases")

/admin/users => {"controller": "admin", "action": "users"}
/admin/databases => {"controller": "admin", "action": "databases"}

All arguments to .submapper must be keyword arguments.

The submapper is not a complete mapper. It’s just a temporary object
with a .connect method that adds routes to the mapper it was spawned
from.

New in Routes 1.11.

Submapper helpers

Submappers contain a number of helpers that further simplify routing
configuration. This:

with map.submapper(controller="home") as m:
 m.connect("home", "/", action="splash")
 m.connect("index", "/index", action="index")

can be written:

with map.submapper(controller="home", path_prefix="/") as m:
 m.action("home", action="splash")
 m.link("index")

The action helper generates a route for one or more HTTP methods (‘GET’ is
assumed) at the submapper’s path (‘/’ in the example above). The link
helper generates a route at a relative path.

There are specific helpers corresponding to the standard index, new,
create, show, edit, update and delete actions.
You can use these directly:

with map.submapper(controller="entries", path_prefix="/entries") as entries:
 entries.index()
 with entries.submapper(path_prefix="/{id}") as entry:
 entry.show()

or indirectly:

with map.submapper(controller="entries", path_prefix="/entries",
 actions=["index"]) as entries:
 entries.submapper(path_prefix="/{id}", actions=["show"])

Collection/member submappers nested in this way are common enough that there is
helper for this too:

map.collection(collection_name="entries", member_name="entry",
 controller="entries",
 collection_actions=["index"], member_actions["show"])

This returns a submapper instance to which further routes may be added; it has
a member property (a nested submapper) to which which member-specific routes
can be added. When collection_actions or member_actions are omitted,
the full set of actions is generated (see the example under “Printing” below).

See “RESTful services” below for map.resource, a precursor to
map.collection that does not use submappers.

New in Routes 1.12.

Adding routes from a nested application

New in Routes 1.11. Sometimes in nested applications, the child application
gives the parent a list of routes to add to its mapper. These can be added
with the .extend method, optionally providing a path prefix:

routes = [
 Route("index", "/index.html", controller="home", action="index"),
]

map.extend(routes)
/index.html => {"controller": "home", "action": "index"}

map.extend(routes, "/subapp")
/subapp/index.html => {"controller": "home", "action": "index"}

This does not exactly add the route objects to the mapper. It creates
identical new route objects and adds those to the mapper.

New in Routes 1.11.

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Routes 1.13 documentation

Generation

To generate URLs, use the url or url_for object provided by your
framework. url is an instance of Routes URLGenerator, while
url_for is the older routes.url_for() function. url_for is being
phased out, so new applications should use url.

To generate a named route, specify the route name as a positional argument:

url("home") => "/"

If the route contains path variables, you must specify values for them using
keyword arguments:

url("blog", year=2008, month=10, day=2)

Non-string values are automatically converted to strings using str().
(This may break with Unicode values containing non-ASCII characters.)

However, if the route defines an extra variable with the same name as a path
variable, the extra variable is used as the default if that keyword is not
specified. Example:

m.connect("archives", "/archives/{id}",
 controller="archives", action="view", id=1)
url("blog", id=123) => "/blog/123"
url("blog") => "/blog/1"

(The extra variable is not used for matching unless minimization is enabled.)

Any keyword args that do not correspond to path variables will be put in the
query string. Append a “_” if the variable name collides with a Python
keyword:

map.connect("archive", "/archive/{year}")
url("archive", year=2009, font=large) => "/archive/2009?font=large"
url("archive", year=2009, print_=1) => "/archive/2009?print=1"

If the application is mounted at a subdirectory of the URL space,
all generated URLs will have the application prefix. The application prefix is
the “SCRIPT_NAME” variable in the request’s WSGI environment.

If the positional argument corresponds to no named route, it is assumed to be a
literal URL. The application’s mount point is prefixed to it, and keyword args
are converted to query parameters:

url("/search", q="My question") => "/search?q=My+question"

If there is no positional argument, Routes will use the keyword args to choose
a route. The first route that has all path variables specified by keyword args
and the fewest number of extra variables not overridden by keyword args will be
chosen. This was common in older versions of Routes but can cause application
bugs if an unexpected route is chosen, so using route names is much preferable
because that guarantees only the named route will be chosen. The most common
use for unnamed generation is when you have a seldom-used controller with a lot
of ad hoc methods; e.g., url(controller="admin", action="session").

An exception is raised if no route corresponds to the arguments. The exception
is routes.util.GenerationException. (Prior to Routes 1.9, None was
returned instead. It was changed to an exception to prevent invalid blank URLs
from being insered into templates.)

You’ll also get this exception if Python produces a Unicode URL (which could
happen if the route path or a variable value is Unicode). Routes generates
only str URLs.

The following keyword args are special:

anchor

Specifies the URL anchor (the part to the right of “#”).

url("home", "summary") => "/#summary"

host

Make the URL fully qualified and override the host (domain).

protocol

Make the URL fully qualified and override the protocol (e.g., “ftp”).

qualified

Make the URL fully qualified (i.e., add “protocol://host:port” prefix).

sub_domain

See “Generating URLs with subdomains” below.

The syntax in this section is the same for both url and url_for.

New in Routes 1.10: ``url`` and the ``URLGenerator`` class behind it.

Generating routes based on the current URL

url.current() returns the URL of the current request, without the query
string. This is called “route memory”, and works only if the RoutesMiddleware
is in the middleware stack. Keyword arguments override path variables or are
put on the query string.

url_for combines the behavior of url and url_current. This is
deprecated because nameless routes and route memory have the same syntax, which
can lead to the wrong route being chosen in some cases.

Here’s an example of route memory:

m.connect("/archives/{year}/{month}/{day}", year=2004)

Current URL is "/archives/2005/10/4".
Routing variables are {"controller": "archives", "action": "view",
 "year": "2005", "month": "10", "day": "4"}

url.current(day=6) => "/archives/2005/10/6"
url.current(month=4) => "/archives/2005/4/4"
url.current() => "/archives/2005/10/4"

Route memory can be disabled globally with map.explicit = True.

Generation-only routes (aka. static routes)

A static route is used only for generation – not matching – and it must be
named. To define a static route, use the argument _static=True.

This example provides a convenient way to link to a search:

map.connect("google", "http://google.com/", _static=True)
url("google", q="search term") => "/http://google.com/?q=search+term")

This example generates a URL to a static image in a Pylons public directory.
Pylons serves the public directory in a way that bypasses Routes, so there’s no
reason to match URLs under it.

map.connect("attachment", "/images/attachments/{category}/{id}.jpg",
 _static=True)
url("attachment", category="dogs", id="Mastiff") =>
 "/images/attachments/dogs/Mastiff.jpg"

Starting in Routes 1.10, static routes are exactly the same as regular routes
except they’re not added to the internal match table. In previous versions of
Routes they could not contain path variables and they had to point to external
URLs.

Filter functions

A filter function modifies how a named route is generated. Don’t confuse it
with a function condition, which is used in matching. A filter function is its
opposite counterpart.

One use case is when you have a story object with attributes for year,
month, and day. You don’t want to hardcode these attributes in every url
call because the interface may change someday. Instead you pass the story as a
pseudo-argument, and the filter produces the actual generation args. Here’s an
example:

class Story(object):
 def __init__(self, year, month, day):
 self.year = year
 self.month = month
 self.day = day

 @staticmethod
 def expand(kw):
 try:
 story = kw["story"]
 except KeyError:
 pass # Don't modify dict if ``story`` key not present.
 else:
 # Set the actual generation args from the story.
 kw["year"] = story.year
 kw["month"] = story.month
 kw["day"] = story.day
 return kw

m.connect("archives", "/archives/{year}/{month}/{day}",
 controller="archives", action="view", _filter=Story.expand)

my_story = Story(2009, 1, 2)
url("archives", story=my_story) => "/archives/2009/1/2"

The _filter argument can be any function that takes a dict and returns a
dict. In the example we’ve used a static method of the Story class to keep
everything story-related together, but you may prefer to use a standalone
function to keep Routes-related code away from your model.

Generating URLs with subdomains

If subdomain support is enabled and the sub_domain arg is passed to
url_for, Routes ensures the generated route points to that subdomain.

Enable subdomain support.
map.sub_domains = True

Ignore the www subdomain.
map.sub_domains_ignore = "www"

map.connect("/users/{action}")

Add a subdomain.
url_for(action="update", sub_domain="fred") => "http://fred.example.com/users/update"

Delete a subdomain. Assume current URL is fred.example.com.
url_for(action="new", sub_domain=None) => "http://example.com/users/new"

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Routes 1.13 documentation

RESTful services

Routes makes it easy to configure RESTful web services. map.resource
creates a set of add/modify/delete routes conforming to the Atom publishing
protocol.

A resource route addresses members in a collection, and the collection
itself. Normally a collection is a plural word, and a member is the
corresponding singular word. For instance, consider a collection of messages:

map.resource("message", "messages")

The above command sets up several routes as if you had typed the
following commands:
map.connect("messages", "/messages",
 controller="messages", action="create",
 conditions=dict(method=["POST"]))
map.connect("messages", "/messages",
 controller="messages", action="index",
 conditions=dict(method=["GET"]))
map.connect("formatted_messages", "/messages.{format}",
 controller="messages", action="index",
 conditions=dict(method=["GET"]))
map.connect("new_message", "/messages/new",
 controller="messages", action="new",
 conditions=dict(method=["GET"]))
map.connect("formatted_new_message", "/messages/new.{format}",
 controller="messages", action="new",
 conditions=dict(method=["GET"]))
map.connect("/messages/{id}",
 controller="messages", action="update",
 conditions=dict(method=["PUT"]))
map.connect("/messages/{id}",
 controller="messages", action="delete",
 conditions=dict(method=["DELETE"]))
map.connect("edit_message", "/messages/{id}/edit",
 controller="messages", action="edit",
 conditions=dict(method=["GET"]))
map.connect("formatted_edit_message", "/messages/{id}.{format}/edit",
 controller="messages", action="edit",
 conditions=dict(method=["GET"]))
map.connect("message", "/messages/{id}",
 controller="messages", action="show",
 conditions=dict(method=["GET"]))
map.connect("formatted_message", "/messages/{id}.{format}",
 controller="messages", action="show",
 conditions=dict(method=["GET"]))

This establishes the following convention:

GET /messages => messages.index() => url("messages")
POST /messages => messages.create() => url("messages")
GET /messages/new => messages.new() => url("new_message")
PUT /messages/1 => messages.update(id) => url("message", id=1)
DELETE /messages/1 => messages.delete(id) => url("message", id=1)
GET /messages/1 => messages.show(id) => url("message", id=1)
GET /messages/1/edit => messages.edit(id) => url("edit_message", id=1)

Note

Due to how Routes matches a list of URL’s, it has no inherent knowledge of
a route being a resource. As such, if a route fails to match due to
the method requirements not being met, a 404 will return just like any
other failure to match a route.

Thus, you GET the collection to see an index of links to members (“index”
method). You GET a member to see it (“show”). You GET “COLLECTION/new” to
obtain a new message form (“new”), which you POST to the collection (“create”).
You GET “MEMBER/edit” to obtain an edit for (“edit”), which you PUT to the
member (“update”). You DELETE the member to delete it. Note that there are
only four route names because multiple actions are doubled up on the same URLs.

This URL structure may look strange if you’re not used to the Atom protocol.
REST is a vague term, and some people think it means proper URL syntax (every
component contains the one on its right), others think it means not putting IDs
in query parameters, and others think it means using HTTP methods beyond GET
and POST. map.resource does all three, but it may be overkill for
applications that don’t need Atom compliance or prefer to stick with GET and
POST. map.resource has the advantage that many automated tools and
non-browser agents will be able to list and modify your resources without any
programming on your part. But you don’t have to use it if you prefer a simpler
add/modify/delete structure.

HTML forms can produce only GET and POST requests. As a workaround, if a POST
request contains a _method parameter, the Routes middleware changes the
HTTP method to whatever the parameter specifies, as if it had been requested
that way in the first place. This convention is becoming increasingly common
in other frameworks. If you’re using WebHelpers, the The WebHelpers form
function has a method argument which automatically sets the HTTP method and
“_method” parameter.

Several routes are paired with an identical route containing the format
variable. The intention is to allow users to obtain different formats by means
of filename suffixes; e.g., “/messages/1.xml”. This produces a routing
variable “xml”, which in Pylons will be passed to the controller action if it
defines a formal argument for it. In generation you can pass the format
argument to produce a URL with that suffix:

url("message", id=1, format="xml") => "/messages/1.xml"

Routes does not recognize any particular formats or know which ones are valid
for your application. It merely passes the format attribute through if it
appears.

New in Routes 1.7.3: changed URL suffix from ”;edit” to “/edit”. Semicolons
are not allowed in the path portion of a URL except to delimit path parameters,
which nobody uses.

Resource options

The map.resource method recognizes a number of keyword args which modifies
its behavior:

controller

Use the specified controller rather than deducing it from the collection
name.

collection

Additional URLs to allow for the collection. Example:

map.resource("message", "messages", collection={"rss": "GET"})
"GET /message/rss" => ``Messages.rss()``.
Defines a named route "rss_messages".

member

Additional URLs to allow for a member. Example:

map.resource('message', 'messages', member={'mark':'POST'})
"POST /message/1/mark" => ``Messages.mark(1)``
also adds named route "mark_message"

This can be used to display a delete confirmation form:

map.resource("message", "messages", member={"ask_delete": "GET"}
"GET /message/1/ask_delete" => ``Messages.ask_delete(1)``.
Also adds a named route "ask_delete_message".

new

Additional URLs to allow for new-member functionality.

map.resource("message", "messages", new={"preview": "POST"})
"POST /messages/new/preview"

path_prefix

Prepend the specified prefix to all URL patterns. The prefix may include
path variables. This is mainly used to nest resources within resources.

name_prefix

Prefix the specified string to all route names. This is most often
combined with path_prefix to nest resources:

map.resource("message", "messages", controller="categories",
 path_prefix="/category/{category_id}",
 name_prefix="category_")
GET /category/7/message/1
Adds named route "category_message"

parent_resource

A dict containing information about the parent resource, for creating a
nested resource. It should contain the member_name and collection_name
of the parent resource. This dict will be available via the associated
Route object which can be accessed during a request via
request.environ["routes.route"].

If parent_resource is supplied and path_prefix isn’t, path_prefix will
be generated from parent_resource as “<parent collection name>/:<parent
member name>_id”.

If parent_resource is supplied and name_prefix isn’t, name_prefix will
be generated from parent_resource as “<parent member name>_”.

Example:

>>> m = Mapper()
>>> m.resource('location', 'locations',
... parent_resource=dict(member_name='region',
... collection_name='regions'))
>>> # path_prefix is "regions/:region_id"
>>> # name prefix is "region_"
>>> url('region_locations', region_id=13)
'/regions/13/locations'
>>> url('region_new_location', region_id=13)
'/regions/13/locations/new'
>>> url('region_location', region_id=13, id=60)
'/regions/13/locations/60'
>>> url('region_edit_location', region_id=13, id=60)
'/regions/13/locations/60/edit'

Overriding generated path_prefix:

>>> m = Mapper()
>>> m.resource('location', 'locations',
... parent_resource=dict(member_name='region',
... collection_name='regions'),
... path_prefix='areas/:area_id')
>>> # name prefix is "region_"
>>> url('region_locations', area_id=51)
'/areas/51/locations'

Overriding generated name_prefix:

>>> m = Mapper()
>>> m.resource('location', 'locations',
... parent_resource=dict(member_name='region',
... collection_name='regions'),
... name_prefix='')
>>> # path_prefix is "regions/:region_id"
>>> url('locations', region_id=51)
'/regions/51/locations'

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Routes 1.13 documentation

Unicode, Redirects, and More

Unicode

Routes assumes UTF-8 encoding on incoming URLs, and url and url_for
also generate UTF-8. You can change the encoding with the map.charset
attribute:

map.charset = "latin-1"

New in Routes 1.10: several bugfixes.

Redirect Routes

Redirect routes allow you to specify redirects in the route map, similar to
RewriteRule in an Apache configuration. This avoids the need to define dummy
controller actions just to handle redirects. It’s especially useful when the
URL structure changes and you want to redirect legacy URLs to their new
equivalents. The redirection is done by the Routes middleware, and the WSGI
application is not called.

map.redirect takes two positional arguments: the route path and the
destination URL. Redirect routes do not have a name. Both paths can contain
variables, and the route path can take inline requirements. Keyword arguments
are the same as map.connect, both in regards to extra variables and to route
options.

map.redirect("/legacyapp/archives/{url:.*}", "/archives/{url}")

map.redirect("/legacyapp/archives/{url:.*}", "/archives/{url}")

By default a “302 Found” HTTP status is issued. You can override this with the
_redirect_code keyword argument. The value must be an entire status
string.

map.redirect("/home/index", "/", _redirect_code="301 Moved Permanently")

New in Routes 1.10.

Printing

Mappers now have a formatted string representation. In your python shell,
simply print your application’s mapper:

>>> map.collection("entries", "entry")
>>> print map
Route name Methods Path Controller action
entries GET /entries{.format} entry index
create_entry POST /entries{.format} entry create
new_entry GET /entries/new{.format} entry new
entry GET /entries/{id}{.format} entry show
update_entry PUT /entries/{id}{.format} entry update
delete_entry DELETE /entries/{id}{.format} entry delete
edit_entry GET /entries/{id}/edit{.format} entry edit

New in Routes 1.12.

Controller/action fields new in Routes 2.1

Introspection

The mapper attribute .matchlist contains the list of routes to be matched
against incoming URLs. You can iterate this list to see what routes are
defined. This can be useful when debugging route configurations.

Other

If your application is behind an HTTP proxy such a load balancer on another
host, the WSGI environment will refer to the internal server rather than to the
proxy, which will mess up generated URLs. Use the ProxyMiddleware in
PasteDeploy to fix the WSGI environment to what it would have been without the
proxy.

To debug routes, turn on debug logging for the “routes.middleware” logger.
(See Python’s logging module to set up your logging configuration.)

Backward compatibility

The following syntaxes are allowed for compatibility with previous versions
of Routes. They may be removed in the future.

Omitting the name arg

In the tutorial we said that nameless routes can be defined by passing None
as the first argument. You can also omit the first argument entirely:

map.connect(None, "/{controller}/{action}")
map.connect("/{controller}/{action}")

The syntax with None is preferred to be forward-compatible with future
versions of Routes. It avoids the path argument changing position between
the first and second arguments, which is unpythonic.

:varname

Path variables were defined in the format :varname and :(varname)
prior to Routes 1.9. The form with parentheses was called “grouping”, used
to delimit the variable name from a following letter or number. Thus the old
syntax “/:controller/:(id)abc” corresponds to the new syntax
“/{controller}/{id}abc”.

The older wildcard syntax is *varname or *(varname):

OK because the following component is static.
map.connect("/static/*filename/download")

Deprecated syntax. WRONG because the wildcard will eat the rest of the
URL, leaving nothing for the following variable, which will cause the
match to fail.
map.connect("/static/*filename/:action")

Minimization

Minimization was a misfeature which was intended to save typing, but which
often resulted in the wrong route being chosen. Old applications that still
depend on it must now enable it by putting map.minimization = True in
their route definitions.

Without minimization, the URL must contain values for all path variables in
the route:

map.connect("basic", "/{controller}/{action}",
 controller="mycontroller", action="myaction", weather="sunny")

This route matches any two-component URL, for instance “/help/about”. The
resulting routing variables would be:

{"controller": "help", "action": "about", "weather": "sunny"}

The path variables are taken from the URL, and any extra variables are added as
constants. The extra variables for “controller” and “action” are never used
in matching, but are available as default values for generation:

url("basic", controller="help") => "/help/about?weather=sunny"

With minimization, the same route path would also match shorter URLs such as
“/help”, “/foo”, and “/”. Missing values on the right of the URL would be
taken from the extra variables. This was intended to lessen the number of
routes you had to write. In practice it led to obscure application bugs
because sometimes an unexpected route would be matched. Thus Routes 1.9
introduced non-minimization and recommended “map.minimization = False” for
all new applications.

A corollary problem was generating the wrong route. Routes 1.9 tightened up
the rule for generating named routes. If a route name is specified in
url() or url_for(), only that named route will be chosen. In
previous versions, it might choose another route based on the keyword args.

Implicit defaults and route memory

Implicit defaults worked with minimization to provide automatic default values
for the “action” and “id” variables. If a route was defined as
map.connect("/{controller}/{action}/{id}") and the URL "/archives" was
requested, Routes would implicitly add action="index", id=None to the
routing variables.

To enable implicit defaults, set map.minimization = True; map.explicit =
False. You can also enable implicit defaults on a per-route basis by setting
map.explicit = True and defining each route with a keyword argument explicit=False.

Previous versions also had implicit default values for “controller”,
“action”, and “id”. These are now disabled by default, but can be enabled via
map.explicit = True. This also enables route memory

url_for()

url_for was a route generation function which was replaced by the url
object. Usage is the same except that url_for uses route memory in some
cases and url never does. Route memory is where variables from the current
URL (the current request) are injected into the generated URL. To use route
memory with url, call url.current() passing the variables you want to
override. Any other variables needed by the route will be taken from the
current routing variables.

In other words, url_for combines url and url.current() into one
function. The location of url_for is also different. url_for is
properly imported from routes:

from routes import url_for

url_for was traditionally imported into WebHelpers, and it’s still used in
some tests and in webhelpers.paginate. Many old Pylons applications
contain h.url_for() based on its traditional importation to helpers.py.
However, its use in new applications is discouraged both because of its
ambiguous syntax and because its implementation depends on an ugly singleton.

The url object is created by the RoutesMiddleware and inserted into the
WSGI environment. Pylons makes it available as pylons.url, and in
templates as url.

redirect_to()

This combined url_for with a redirect. Instead, please use your
framework’s redirect mechanism with a url call. For instance in Pylons:

from pylons.controllers.util import redirect
redirect(url("login"))

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Routes 1.13 documentation

Routes Changelog

Release 2.1 (January 17, 2015)

	Fix 3 other route matching groups in route.py to use anonymous groups for
optional sections to avoid exceeding regex limits. Fixes #15.

	Printing a mapper now includes the Controller/action parameters from the
route. Fixes #11.

	Fix regression that didn’t allow passing in params ‘host’, ‘protocol’, or
‘anchor’. They can now be passed in with a trailing ‘_’ as was possible
before commit d1d1742903fa5ca24ef848a6ae895303f2661b2a. Fixes #7.

	URL generation with/without SCRIPT_NAME was resulting in the URL cache
failing to return the appropriate cached URL generation. The URL cache
should always include the SCRIPT_NAME, even if its empty, in the cache
to avoid this, and now does. Fixes #6.

	Extract Route creation into separate method in Mapper. Subclasses of Route
can be created by Mappers now.

	Use the first X_FORWARDED_FOR value if there are multiple proxies in the
path. Fixes #5.

Release 2.0 (November 17, 2013)

	Python 3.2/3.3 Support. Fixes Issue #2. Thanks to Alejandro Sánchez for
the pull request!

Release 1.13 (March 12, 2012)

	Fix bug with dots forcing extension by default. The portion with the dot can
now be recognized. Patch by Michael Basnight.

Release 1.12.3 (June 5, 2010)

	Fix bug with URLGenerator not properly including SCRIPT_NAME when generating
URL’s and the singleton is not present.

Release 1.12.2 (May 5, 2010)

	Fix bug with routes URLGenerator not properly including SCRIPT_NAME when
generating qualified URL’s.

Release 1.12.1 (March 11, 2010)

	Fix bug with routes not generating URL’s with callables in defaults.

	Fix bug with routes not handling sub-domain defaults during generation.

Release 1.12 (February 28, 2010)

	Split up the Routes docs.

	Fix bug with relative URL’s using qualified merging host and URL without
including the appropriate slash. Fixes #13.

	Fix bug with mapper.extend and Routes modifying their original args.
Fixes #24.

	Fix url.current() not returning current args when explicit is True.

	Added explicit way to directly use the Mapper to match with environ.

	Fix bug with improper len placement for submapper.

	Adding regular expression builder for entire regexp for faster rejection
in a single regexp match should none of the routes match.

	Give Mapper a tabular string representation.

	Make SubMapper objects nestable and add route-generation helpers.

	Add SubMapper-based collections.

	Make the deprecated Mapper.minimization False (disabled) by default.

	Make the mapper explicit (true) by default.

Release 1.11 (September 28, 2009)

	Extensive documentation rewrite.

	Added Mapper.extend function that allows one to add lists of Routes objects
to the mapper in one batch, optionally with a path_prefix.

	Added Mapper.submapper function that returns a SubMapper object to enable
easier declaration of routes that have multiple keyword argument options
in common.

	Mapper controller_scan argument now handles None, and lists of controller
names in addition to a callable.

	Route object now takes a name parameter, which is the name it responds to.
This name is automatically added when called by using Mapper’s connect
class method.

	Added optional LRU object for use with Routes when URL’s change too often
for the Routes urlcache dict to be a viable option.

Release 1.10.3 (February 8, 2009)

	Tweak to use WebOb Request rather than Paste.

	Performance tweaks for URL recognition.

	Bugfix for routes.middleware not re.escaping the path_info before moving it
to the script name.

Release 1.10.2 (January 11, 2009)

	Bugfix for unicode encoding problems with non-minimized Route generation.
Spotted by Wichert Akkerman.

	Bugfix for when environ is {} in unit tests.

Release 1.10.1 (September 27, 2008)

	Removing LRU cache due to performance and threading issues. Cache does hit
a max-size for the given routes.

Release 1.10 (September 24, 2008)

	Adding LRU cache instead of just dict for caching generated routes. This
avoids slow memory leakage over long-running and non-existent route
generation.

	Adding URLGenerator object.

	Adding redirect routes.

	Static routes can now interpolate variable parts in the path if using {}
variable part syntax.

	Added sub_domain condition option to accept False or None, to require that
there be no sub-domain provided for the route to match.

Release 1.9.2 (July 8, 2008)

	Fixed bug in url_for which caused it to return a literal when it shouldn’t
have.

Release 1.9.1 (June 28, 2008)

	Fixed bug in formatted route recognition with formatting being absorbed
into the id.

Release 1.9 (June 12, 2008)

	Fix undefined arg bug in url_for.

	Fixed bug with url_for not working properly outside of a request when
sub-domains are active. Thanks Pavel Skvazh.

	Add non-minimization option to Routes and the Mapper for generation and
recognition.

	Add Routes 2.0 style syntax for making routes and regexp. For example, this
route will now work: ‘{controller}/{action}/{id}’.

	Fixed Routes to not use quote_plus when making URL’s.

	WARNING: Mapper now comes with hardcode_names set to True by default. This
means routes generated by name must work for the URL.

	Actually respect having urlcache disabled.

	WARNING: Calling url_for with a set of args that returns None now throws an
exception. Code that previously checked to see if a url could be made must
be updated accordingly.

	Updated url_for to return url in a literal for use in templating that may
try to escape it again.

	Added option to use X_FORWARDED_PROTO for proxying behind https to work
easier.

	Fixed map.resource to be less restrictive on id than just spaces.

	Fixed Mapper.create_regs not being thread safe, particularly when
always_scan=True.

Release 1.8 (March 28, 2008)

	Fixed bug of map.resource not allowing spaces in id.

	Fixed url generation to properly handle unicode defaults in addition to
unicode arguments.

	Fixed url_for to handle lists as keyword args when generating query
parameters.

	WARNING: Changed map.resource to not use ‘;’, for actions, but the
normal ‘/’. This means that formatted URL’s will also now have the format
come AFTER the action. Ie: /messsages/4.xml;rss -> /messages/4/rss.xml

Release 1.7.3 (May 28th, 2008)

	Fixed triple escaping bug, since WSGI servers are responsible for basic
unescaping.

Release 1.7.2 (Feb. 27th, 2008)

	Fixed bug with keyword args not being coerced to raw string properly.

Release 1.7.1 (Nov. 16th, 2007)

	Fixed bug with sub-domains from route defaults getting encoded to unicode
resulting in a unicode route which then caused url_for to throw an
exception.

	Removed duplicate assignment in map.resource. Patch by Mike Naberezny.

	Applied test patch fix for path checking. Thanks Mike Naberezny.

	Added additional checking of remaining URL, to properly swallow periods in
the appropriate context. Fixes #57.

	Added mapper.hardcode_names option which restricts url generation to the
named route during generation rather than using the routes default options
during generation.

	Fixed the special ‘_method’ attribute not being recognized during POST
requests of Content-Type ‘multipart/form-data’.

Release 1.7 (June 8th, 2007)

	Fixed url_unquoting to only apply for strings.

	Added _encoding option to individual routes to toggle decoding/encoding on a
per route basis.

	Fixed route matching so that ‘.’ and other special chars are only part of the
match should they not be followed by that character. Fixed regexp creation so
that route parts with ‘.’ in them aren’t matched properly. Fixes #48.

	Fixed Unicode decoding/encoding so that the URL decoding and encoding can be
set on the mapper with mapper.encoding. Fixes #40.

	Don’t assume environ[‘CONTENT_TYPE’] always exists: it may be omitted
according to the WSGI PEP.

	Fixed Unicode decode/encoding of path_info dynamic/wildcard parts so that
PATH_INFO will stay a raw string as it should. Fixes #51.

	Fixed url_for (thus redirect_to) to throw an exception if a Unicode
string is returned as that’s an invalid URL. Fixes #46.

	Fixed Routes middleware to only parse POST’s if the content type is
application/x-www-form-urlencoded for a HTML form. This properly avoids
parsing wsgi.input when it doesn’t need to be.

Release 1.6.3 (April 10th, 2007)

	Fixed matching so that an attempt to match an empty path raises a
RouteException. Fixes #44.

	Added ability to use characters in URL’s such as ‘-‘ and ‘_’ in
map.resource. Patch by Wyatt Baldwin. Fixes #45.

	Updated Mapper.resource handling with name_prefix and path_prefix checking
to specify defaults. Also ensures that should either of them be set, they
override the prefixes should parent_resource be specified. Patch by Wyatt
Baldwin. Fixes #42.

	Added utf-8 decoding of incoming path arguments, with fallback to ignoring
them in the very rare cases a malformed request URL is sent. Patch from
David Smith.

	Fixed treatment of ‘#’ character as something that can be left off and
used in route paths. Found by Mike Orr.

	Added ability to specify parent resource to map.resource command. Patch from
Wyatt Baldwin.

	Fixed formatted route issue with map.resource when additional collection
methods are specified. Added unit tests to verify the collection methods
work properly.

	Updated URL parsing to properly use HTTP_HOST for hostname + port info before
falling back to SERVER_PORT and SERVER_NAME. Fixes #43.

	Added member_name and collection_name setting to Route object when made with
map.resource.

	Updated routes.middleware to make the Routes matched accessible as
environ[‘routes.route’].

	Updating mapper object to use thread local for request data (such as
environ) and middleware now deletes environ references at the end of the
request.

	Added explicit option to Routes and Mapper. Routes _explicit setting will
prevent the Route defaults from being implicitly set, while setting Mapper
to explicit will prevent Route implicit defaults and stop url_for from using
Route memory. Fixes #38.

	Updated config object so that the route is attached if possible.

	Adding standard logging usage with debug messages.

	Added additional test for normal ‘.’ match and fixed new special matching to
match it properly. Thanks David Smith.

	Fixed hanging special char issue with ‘special’ URL chars at the end of a URL
that are missing the variable afterwards.

	Changed Routes generation and recognition to handle other ‘special’ URL chars
, . and ; as if they were /. This lets them be optionally left out of the
resulting generated URL. Feature requested by David Smith.

	Fixed lookahead assertion in regexp builder to properly handle two grouped
patterns in a row.

	Applied patch to generation and matching to handle Unicode characters
properly. Reported with patch by David Smith.

Release 1.6.2 (Jan. 5, 2007)

	Fixed issue with method checking not properly handling different letter
cases in REQUEST_METHOD. Reported by Sean Davis.

	redirect_to now supports config.redirect returning a redirect, not just
raising one.

Release 1.6.1 (Dec. 29, 2006)

	Fixed zipsafe flag to be False.

Release 1.6 (Dec. 14th, 2006)

	Fixed append_slash to take effect in the route generation itself instead of
relying on url_for function. Reported by ToddG.

	Added additional url_for tests to ensure map.resource generates proper named
routes.

	WARNING: Changed map.resource initialization to accept individual member and
collection names to generate proper singular and plural route names. Those
using map.resource will need to update their routes and url_for statements
accordingly.

	Added additional map.resource recognition tests.

	Added WSGI middleware that does route resolving using new WSGI.org Routing
Vars Spec [http://wsgi.org/wsgi/Specifications/routing_args].

	Added _absolute keyword option route connect to ignore SCRIPT_NAME settings.
Suggested by Ian Bicking.

Release 1.5.2 (Oct. 16th, 2006)

	Fixed qualified keyword to keep host port names when used, unless a host
is specifically passed in. Reported by Jon Rosebaugh.

	Added qualified keyword option to url_for to have it generate a full
URL. Resolves #29.

	Fixed examples in url_for doc strings so they’ll be accurate.

Release 1.5.1 (Oct. 4th, 2006)

	Fixed bug with escaping part names in the regular expression, reported by
James Taylor.

Release 1.5 (Sept. 19th, 2006)

	Significant updates to map.resource and unit tests that comb it thoroughly
to ensure its creating all the proper routes (it now is). Increased unit
testing coverage to 95%.

	Added unit tests to ensure controller_scan works properly with nested
controller files and appropriately scans the directory structure. This
brings the Routes util module up to full code coverage.

	Fixed url_for so that when the protocol is changed, port information is
removed from the host.

	Added more thorough testing to _RequestConfig object and the ability to
set your own object. This increases testing coverage of the __init__ module
to 100%.

	Fixed bug with sub_domain not maintaining port information in url_for and
added unit tests. Reported by Jonathan Rosebaugh.

	Added unit tests to ensure sub_domain option works with named routes, cleaned
up url_for memory argument filtering. Fixed bug with named routes and sub_domain
option not working together, reported by Jonathan Rosebaugh.

	Changed order in which sub-domain is added to match-dict so it can be used
in a conditions function.

Release 1.4.1 (Sept. 6th, 2006)

	Added sub_domains option to mapper, along with sub_domains_ignore list for
subdomains that are considered equivilant to the main domain. When sub_domains
is active, url_for will now take a sub_domain option that can alter the host
the route will go to.

	Added ability for filter functions to provide a _host, _protocol, _anchor arg
which is then used to create the URL with the appropriate host/protocol/anchor
destination.

	Patch applied from Ticket #28. Resolves issue with Mapper’s controller_scan
function requiring a valid directory argument. Submitted by Zoran Isailovski.

Release 1.4 (July 21, 2006)

	Fixed bug with map.resource related to member methods, found in Rails version.

	Fixed bug with map.resource member methods not requiring a member id.

	Fixed bug related to handling keyword argument controller.

	Added map.resource command which can automatically generate a batch of routes intended
to be used in a REST-ful manner by a web framework.

	Added URL generation handling for a ‘method’ argument. If ‘method’ is specified, it
is not dropped and will be changed to ‘_method’ for use by the framework.

	Added conditions option to map.connect. Accepts a dict with optional keyword args
‘method’ or ‘function’. Method is a list of HTTP methods that are valid for the route.
Function is a function that will be called with environ, matchdict where matchdict is
the dict created by the URL match.

	Fixed redirect_to function for using absolute URL’s. redirect_to now passes all args to
url_for, then passes the resulting URL to the redirect function. Reported by climbus.

Release 1.3.2 (April 30th, 2006)

	Fixed _filter bug with inclusion in match dict during matching, reported by David Creemer.

	Fixed improper url quoting by using urllib.encode, patch by Jason Culverhouse.

Release 1.3.1 (April 4th, 2006)

	Mapper has an optional attribute append_slash. When set to True, any URL’s
generated will have a slash appended to the end.

	Fixed prefix option so that if the PATH_INFO is empty after prefix regexp, its set to
‘/’ so the match proceeds ok.

	Fixed prefix bug that caused routes after the initial one to not see the proper url
for matching. Caught by Jochen Kupperschmidt.

Release 1.3 (Feb. 25th, 2006)

	url_for keyword filters:
Named routes can now have a _filter argument that should specify a function that takes
a dict as its sole argument. The dict will contain the full set of keywords passed to
url_for, which the function can then modify as it pleases. The new dict will then be
used as if it was the original set of keyword args given to url_for.

	Fixed Python 2.3 incompatibility due to using keyword arg for a sort statement
when using the built-in controller scanner.

Release 1.2 (Feb. 17th, 2006)

	If a named route doesn’t exist, and a url_for call is used, instead of using the
keyword arguments to generate a URL, they will be used as query args for the raw
URL supplied. (Backwards Incompatible)

	If Mapper has debug=True, using match will return two additional values, the route
that matched, if one did match. And a list of routes that were tried, and information
about why they didn’t pass.

	url_for enhancements:
Can now be used with ‘raw’ URL’s to generate proper url’s for static content that
will then automatically include SCRIPT_NAME if necessary
Static named routes can now be used to shortcut common path information as desired.

	Controller Scanner will now sort controller names so that the longest one is first. This
ensures that the deepest nested controller is executed first before more shallow ones to
increase predictability.

	Controller Scanner now scans directories properly, the version in 1.1 left off the
directory prefix when created the list of controllers.
(Thanks to Justin for drawing my attention to it)

Release 1.1 (Jan. 13th, 2006)

	Routes Mapper additions:
Now takes several optional arguments that determine how it will
generate the regexp’s.
Can now hold a function for use when determining what the available
controllers are. Comes with a default directory scanner
Given a directory for the default scanner or a function, the Mapper
will now automatically run it to get the controller list when needed

	Syntax available for splitting routes to allow more complex route paths, such
as ‘:controller/:(action)-:(id).html’

	Easier setup/integration with Routes per request. Setting the environ in a
WSGI environ will run match, and setup everything needed for url_for/etc.

Release 1.0.2 (Dec. 30th, 2005)

	Routes where a default was present but None were filling in improper values.

	Passing a 0 would evaluate to None during generation, resulting in missing
URL parts

Release 1.0.1 (Dec. 18th, 2005)

	Request Local Callable - You can now designate your own callable function that
should then be used to store the request_config data. This is most useful for
environments where its possible multiple requests might be running in a single
thread. The callable should return a request specific object for attributes to
be attached. See routes.__init__.py for more information.

Release 1.0 (Nov. 21st, 2005)

	routes.__init__ will now load the common symbols most people will
want to actually use.
Thus, you can either:

from routes import *

Or:

from routes import request_confg, Mapper

The following names are available for importing from routes:

request_config, Mapper, url_for, redirect_to

	Route Names - You can now name a route, which will save a copy of the defaults
defined for later use by url_for or redirect_to.
Thus, a route and url_for looking like this:

m.connect('home', controller='blog', action='splash')
url_for(controller='blog', action='splash') # => /home

Can now be used with a name:

m.connect('home_url','home', controller='blog', action='splash')
url_for('home_url') # => /home

Additional keywords can still be added to url_for and will override defaults in
the named route.

	Trailing / - Route recognition earlier failed on trailing slashes, not really a bug,
not really a feature I guess. Anyways, trailing slashes are o.k. now as in the Rails
version.

	redirect_to now has two sets of tests to ensure it works properly

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Routes 1.13 documentation

Glossary

	component

	A part of a URL delimited by slashes. The URL “/help/about” contains
two components: “help” and “about”.

	generation

	The act of creating a URL based on a route name and/or variable values.
This is the opposite of matching. Finding a route by name is called
named generation. Finding a route without specifying a name is
called nameless generation.

	mapper

	A container for routes. There is normally one mapper per application,
although nested subapplications might have their own mappers. A
mapper knows how to match routes and generate them.

	matching

	The act of matching a given URL against a list of routes, and
returning the routing variables. See the route entry for an example.

	minimization

	A deprecated feature which allowed short URLs to match long paths.
Details are in the Backward Compatibility section in the manual.

	route

	A rule mapping a URL pattern to a dict of routing variables. For
instance, if the pattern is “/{controller}/{action}” and the requested
URL is “/help/about”, the resulting dict would be:

{"controller": "help", "action": "about"}

Routes does not know what these variables mean; it simply returns them
to the application. Pylons would look for a controllers/help.py
module containing a HelpController class, and call its about
method. Other frameworks may do something different.

A route may have a name, used to identify the route.

	route path

	The URL pattern in a route.

	routing variables

	A dict of key-value pairs returned by matching. Variables defined in
the route path are called path variables; their values will be taken
from the URL. Variables defined outside the route path are called
default variables; their values are not affected by the URL.

The WSGI.org environment key for routing variables is
“wsgiorg.routing_args”. This manual does not use that term because it
can be confused with function arguments.

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Routes 1.13 documentation

Porting Routes to a WSGI Web Framework

RoutesMiddleware

An application can create a raw mapper object and call its .match and
.generate methods. However, WSGI applications probably want to use
the RoutesMiddleware as Pylons does:

In myapp/config/middleware.py
from routes.middleware import RoutesMiddleware
app = RoutesMiddleware(app, map) # ``map`` is a routes.Mapper.

The middleware matches the requested URL and sets the following WSGI
variables:

environ['wsgiorg.routing_args'] = ((url, match))
environ['routes.route'] = route
environ['routes.url'] = url

where match is the routing variables dict, route is the matched route,
and url is a URLGenerator object. In Pylons, match is used by the
dispatcher, and url is accessible as pylons.url.

The middleware handles redirect routes itself, issuing the appropriate
redirect. The application is not called in this case.

To debug routes, turn on debug logging for the “routes.middleware” logger.

See the Routes source code for other features which may have been added.

URL Resolution

When the URL is looked up, it should be matched against the Mapper. When
matching an incoming URL, it is assumed that the URL path is the only string
being matched. All query args should be stripped before matching:

m.connect('articles/{year}/{month}', controller='blog', action='view', year=None)

m.match('/articles/2003/10')
{'controller':'blog', 'action':'view', 'year':'2003', 'month':'10'}

Matching a URL will return a dict of the match results, if you’d like to
differentiate between where the argument came from you can use routematch which
will return the Route object that has all these details:

m.connect('articles/{year}/{month}', controller='blog', action='view', year=None)

result = m.routematch('/articles/2003/10')
result is a tuple of the match dict and the Route object

result[0] - {'controller':'blog', 'action':'view', 'year':'2003', 'month':'10'}
result[1] - Route object
result[1].defaults - {'controller':'blog', 'action':'view', 'year':None}
result[1].hardcoded - ['controller', 'action']

Your integration code is then expected to dispatch to a controller and action
in the dict. How it does this is entirely up to the framework integrator. Your
integration should also typically provide the web developer a mechanism to
access the additional dict values.

Request Configuration

If you intend to support url_for() and redirect_to(), they depend on a
singleton object which requires additional configuration. You’re better off
not supporting them at all because they will be deprecated soon.
URLGenerator is the forward-compatible successor to url_for().
redirect_to() is better done in the web framework`as in
pylons.controllers.util.redirect_to().

url_for() and redirect_to() need information on the current request,
and since they can be called from anywhere they don’t have direct access to the
WSGI environment. To remedy this, Routes provides a thread-safe singleton class
called “request_config”, which holds the request information for the current
thread. You should update this after matching the incoming URL but before
executing any code that might call the two functions. Here is an example:

from routes import request_config

config = request_config()

config.mapper = m # Your mapper object
config.mapper_dict = result # The dict from m.match for this URL request
config.host = hostname # The server hostname
config.protocol = port # Protocol used, http, https, etc.
config.redirect = redir_func # A redirect function used by your framework, that is
 # expected to take as the first non-keyword arg a single
 # full or relative URL

See the docstring for request_config in routes/__init__.py to make sure
you’ve initialized everything necessary.

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Routes 1.13 documentation

Routes Modules

	routes – Routes Common Classes and Functions
	Module Contents

	routes.mapper – Mapper and Sub-Mapper
	Module Contents

	routes.route – Route
	Module Contents

	routes.middleware – Routes WSGI Middleware
	Module Contents

	routes.util – URL Generator and utility functions
	Module Contents

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Routes 1.13 documentation

 	Routes Modules

routes – Routes Common Classes and Functions

Provides common classes and functions most users will want access to.

Module Contents

	
routes.request_config(original=False)

	Returns the Routes RequestConfig object.

To get the Routes RequestConfig:

>>> from routes import *
>>> config = request_config()

The following attributes must be set on the config object every request:

	mapper

	mapper should be a Mapper instance thats ready for use

	host

	host is the hostname of the webapp

	protocol

	protocol is the protocol of the current request

	mapper_dict

	mapper_dict should be the dict returned by mapper.match()

	redirect

	redirect should be a function that issues a redirect,
and takes a url as the sole argument

	prefix (optional)

	Set if the application is moved under a URL prefix. Prefix
will be stripped before matching, and prepended on generation

	environ (optional)

	Set to the WSGI environ for automatic prefix support if the
webapp is underneath a ‘SCRIPT_NAME’

Setting the environ will use information in environ to try and
populate the host/protocol/mapper_dict options if you’ve already
set a mapper.

Using your own requst local

If you have your own request local object that you’d like to use instead
of the default thread local provided by Routes, you can configure Routes
to use it:

from routes import request_config()
config = request_config()
if hasattr(config, 'using_request_local'):
 config.request_local = YourLocalCallable
 config = request_config()

Once you have configured request_config, its advisable you retrieve it
again to get the object you wanted. The variable you assign to
request_local is assumed to be a callable that will get the local config
object you wish.

This example tests for the presence of the ‘using_request_local’ attribute
which will be present if you haven’t assigned it yet. This way you can
avoid repeat assignments of the request specific callable.

Should you want the original object, perhaps to change the callable its
using or stop this behavior, call request_config(original=True).

	
class routes._RequestConfig

	RequestConfig thread-local singleton

The Routes RequestConfig object is a thread-local singleton that should
be initialized by the web framework that is utilizing Routes.

	
load_wsgi_environ(environ)

	Load the protocol/server info from the environ and store it.
Also, match the incoming URL if there’s already a mapper, and
store the resulting match dict in mapper_dict.

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Routes 1.13 documentation

 	Routes Modules

routes.mapper – Mapper and Sub-Mapper

Mapper and Sub-Mapper

Module Contents

	
class routes.mapper.SubMapperParent

	Base class for Mapper and SubMapper, both of which may be the parent
of SubMapper objects

	
collection(collection_name, resource_name, path_prefix=None, member_prefix='/{id}', controller=None, collection_actions=['index', 'create', 'new'], member_actions=['show', 'update', 'delete', 'edit'], member_options=None, **kwargs)

	Create a submapper that represents a collection.

This results in a routes.mapper.SubMapper object, with a
member property of the same type that represents the collection’s
member resources.

Its interface is the same as the submapper together with
member_prefix, member_actions and member_options
which are passed to the member submapper as path_prefix,
actions and keyword arguments respectively.

Example:

>>> from routes.util import url_for
>>> map = Mapper(controller_scan=None)
>>> c = map.collection('entries', 'entry')
>>> c.member.link('ping', method='POST')
>>> url_for('entries') == '/entries'
True
>>> url_for('edit_entry', id=1) == '/entries/1/edit'
True
>>> url_for('ping_entry', id=1) == '/entries/1/ping'
True

	
submapper(**kargs)

	Create a partial version of the Mapper with the designated
options set

This results in a routes.mapper.SubMapper object.

If keyword arguments provided to this method also exist in the
keyword arguments provided to the submapper, their values will
be merged with the saved options going first.

In addition to routes.route.Route arguments, submapper
can also take a path_prefix argument which will be
prepended to the path of all routes that are connected.

Example:

>>> map = Mapper(controller_scan=None)
>>> map.connect('home', '/', controller='home', action='splash')
>>> map.matchlist[0].name == 'home'
True
>>> m = map.submapper(controller='home')
>>> m.connect('index', '/index', action='index')
>>> map.matchlist[1].name == 'index'
True
>>> map.matchlist[1].defaults['controller'] == 'home'
True

Optional collection_name and resource_name arguments are
used in the generation of route names by the action and
link methods. These in turn are used by the index,
new, create, show, edit, update and
delete methods which may be invoked indirectly by listing
them in the actions argument. If the formatted argument
is set to True (the default), generated paths are given the
suffix ‘{.format}’ which matches or generates an optional format
extension.

Example:

>>> from routes.util import url_for
>>> map = Mapper(controller_scan=None)
>>> m = map.submapper(path_prefix='/entries', collection_name='entries', resource_name='entry', actions=['index', 'new'])
>>> url_for('entries') == '/entries'
True
>>> url_for('new_entry', format='xml') == '/entries/new.xml'
True

	
class routes.mapper.SubMapper(obj, resource_name=None, collection_name=None, actions=None, formatted=None, **kwargs)

	Partial mapper for use with_options

	
action(name=None, action=None, method='GET', formatted=None, **kwargs)

	Generates a named route at the base path of a submapper.

Example:

>>> from routes import url_for
>>> map = Mapper(controller_scan=None)
>>> c = map.submapper(path_prefix='/entries', controller='entry')
>>> c.action(action='index', name='entries', formatted=True)
>>> c.action(action='create', method='POST')
>>> url_for(controller='entry', action='index', method='GET') == '/entries'
True
>>> url_for(controller='entry', action='index', method='GET', format='xml') == '/entries.xml'
True
>>> url_for(controller='entry', action='create', method='POST') == '/entries'
True

	
add_actions(actions)

	

	
connect(*args, **kwargs)

	

	
create(**kwargs)

	Generates the “create” action for a collection submapper.

	
delete(**kwargs)

	Generates the “delete” action for a collection member submapper.

	
edit(**kwargs)

	Generates the “edit” link for a collection member submapper.

	
index(name=None, **kwargs)

	Generates the “index” action for a collection submapper.

	
link(rel=None, name=None, action=None, method='GET', formatted=None, **kwargs)

	Generates a named route for a subresource.

Example:

>>> from routes.util import url_for
>>> map = Mapper(controller_scan=None)
>>> c = map.collection('entries', 'entry')
>>> c.link('recent', name='recent_entries')
>>> c.member.link('ping', method='POST', formatted=True)
>>> url_for('entries') == '/entries'
True
>>> url_for('recent_entries') == '/entries/recent'
True
>>> url_for('ping_entry', id=1) == '/entries/1/ping'
True
>>> url_for('ping_entry', id=1, format='xml') == '/entries/1/ping.xml'
True

	
new(**kwargs)

	Generates the “new” link for a collection submapper.

	
show(name=None, **kwargs)

	Generates the “show” action for a collection member submapper.

	
update(**kwargs)

	Generates the “update” action for a collection member submapper.

	
class routes.mapper.Mapper(controller_scan=<function controller_scan at 0x7fcd62c691b8>, directory=None, always_scan=False, register=True, explicit=True)

	Mapper handles URL generation and URL recognition in a web
application.

Mapper is built handling dictionary’s. It is assumed that the web
application will handle the dictionary returned by URL recognition
to dispatch appropriately.

URL generation is done by passing keyword parameters into the
generate function, a URL is then returned.

Create a new Mapper instance

All keyword arguments are optional.

	controller_scan

	Function reference that will be used to return a list of
valid controllers used during URL matching. If
directory keyword arg is present, it will be passed
into the function during its call. This option defaults to
a function that will scan a directory for controllers.

Alternatively, a list of controllers or None can be passed
in which are assumed to be the definitive list of
controller names valid when matching ‘controller’.

	directory

	Passed into controller_scan for the directory to scan. It
should be an absolute path if using the default
controller_scan function.

	always_scan

	Whether or not the controller_scan function should be
run during every URL match. This is typically a good idea
during development so the server won’t need to be restarted
anytime a controller is added.

	register

	Boolean used to determine if the Mapper should use
request_config to register itself as the mapper. Since
it’s done on a thread-local basis, this is typically best
used during testing though it won’t hurt in other cases.

	explicit

	Boolean used to determine if routes should be connected
with implicit defaults of:

{'controller':'content','action':'index','id':None}

When set to True, these defaults will not be added to route
connections and url_for will not use Route memory.

Additional attributes that may be set after mapper
initialization (ie, map.ATTRIBUTE = ‘something’):

	encoding

	Used to indicate alternative encoding/decoding systems to
use with both incoming URL’s, and during Route generation
when passed a Unicode string. Defaults to ‘utf-8’.

	decode_errors

	How to handle errors in the encoding, generally ignoring
any chars that don’t convert should be sufficient. Defaults
to ‘ignore’.

	minimization

	Boolean used to indicate whether or not Routes should
minimize URL’s and the generated URL’s, or require every
part where it appears in the path. Defaults to True.

	hardcode_names

	Whether or not Named Routes result in the default options
for the route being used or if they actually force url
generation to use the route. Defaults to False.

	
connect(*args, **kargs)

	Create and connect a new Route to the Mapper.

Usage:

m = Mapper()
m.connect(':controller/:action/:id')
m.connect('date/:year/:month/:day', controller="blog",
 action="view")
m.connect('archives/:page', controller="blog", action="by_page",
requirements = { 'page':'\d{1,2}' })
m.connect('category_list', 'archives/category/:section',
 controller='blog', action='category',
 section='home', type='list')
m.connect('home', '', controller='blog', action='view',
 section='home')

	
create_regs(*args, **kwargs)

	Atomically creates regular expressions for all connected
routes

	
extend(routes, path_prefix='')

	Extends the mapper routes with a list of Route objects

If a path_prefix is provided, all the routes will have their
path prepended with the path_prefix.

Example:

>>> map = Mapper(controller_scan=None)
>>> map.connect('home', '/', controller='home', action='splash')
>>> map.matchlist[0].name == 'home'
True
>>> routes = [Route('index', '/index.htm', controller='home',
... action='index')]
>>> map.extend(routes)
>>> len(map.matchlist) == 2
True
>>> map.extend(routes, path_prefix='/subapp')
>>> len(map.matchlist) == 3
True
>>> map.matchlist[2].routepath == '/subapp/index.htm'
True

Note

This function does not merely extend the mapper with the
given list of routes, it actually creates new routes with
identical calling arguments.

	
generate(*args, **kargs)

	Generate a route from a set of keywords

Returns the url text, or None if no URL could be generated.

m.generate(controller='content',action='view',id=10)

	
make_route(*args, **kargs)

	Make a new Route object

A subclass can override this method to use a custom Route class.

	
match(url=None, environ=None)

	Match a URL against against one of the routes contained.

Will return None if no valid match is found.

resultdict = m.match('/joe/sixpack')

	
redirect(match_path, destination_path, *args, **kwargs)

	Add a redirect route to the mapper

Redirect routes bypass the wrapped WSGI application and instead
result in a redirect being issued by the RoutesMiddleware. As
such, this method is only meaningful when using
RoutesMiddleware.

By default, a 302 Found status code is used, this can be
changed by providing a _redirect_code keyword argument
which will then be used instead. Note that the entire status
code string needs to be present.

When using keyword arguments, all arguments that apply to
matching will be used for the match, while generation specific
options will be used during generation. Thus all options
normally available to connected Routes may be used with
redirect routes as well.

Example:

map = Mapper()
map.redirect('/legacyapp/archives/{url:.*}, '/archives/{url})
map.redirect('/home/index', '/',
 _redirect_code='301 Moved Permanently')

	
resource(member_name, collection_name, **kwargs)

	Generate routes for a controller resource

The member_name name should be the appropriate singular version
of the resource given your locale and used with members of the
collection. The collection_name name will be used to refer to
the resource collection methods and should be a plural version
of the member_name argument. By default, the member_name name
will also be assumed to map to a controller you create.

The concept of a web resource maps somewhat directly to ‘CRUD’
operations. The overlying things to keep in mind is that
mapping a resource is about handling creating, viewing, and
editing that resource.

All keyword arguments are optional.

	controller

	If specified in the keyword args, the controller will be
the actual controller used, but the rest of the naming
conventions used for the route names and URL paths are
unchanged.

	collection

	Additional action mappings used to manipulate/view the
entire set of resources provided by the controller.

Example:

map.resource('message', 'messages', collection={'rss':'GET'})
GET /message/rss (maps to the rss action)
also adds named route "rss_message"

	member

	Additional action mappings used to access an individual
‘member’ of this controllers resources.

Example:

map.resource('message', 'messages', member={'mark':'POST'})
POST /message/1/mark (maps to the mark action)
also adds named route "mark_message"

	new

	Action mappings that involve dealing with a new member in
the controller resources.

Example:

map.resource('message', 'messages', new={'preview':'POST'})
POST /message/new/preview (maps to the preview action)
also adds a url named "preview_new_message"

	path_prefix

	Prepends the URL path for the Route with the path_prefix
given. This is most useful for cases where you want to mix
resources or relations between resources.

	name_prefix

	Perpends the route names that are generated with the
name_prefix given. Combined with the path_prefix option,
it’s easy to generate route names and paths that represent
resources that are in relations.

Example:

map.resource('message', 'messages', controller='categories',
 path_prefix='/category/:category_id',
 name_prefix="category_")
GET /category/7/message/1
has named route "category_message"

	parent_resource

	A dict containing information about the parent
resource, for creating a nested resource. It should contain
the member_name and collection_name of the parent
resource. This dict will
be available via the associated Route object which can
be accessed during a request via
request.environ['routes.route']

If parent_resource is supplied and path_prefix
isn’t, path_prefix will be generated from
parent_resource as
“<parent collection name>/:<parent member name>_id”.

If parent_resource is supplied and name_prefix
isn’t, name_prefix will be generated from
parent_resource as “<parent member name>_”.

Example:

>>> from routes.util import url_for
>>> m = Mapper()
>>> m.resource('location', 'locations',
... parent_resource=dict(member_name='region',
... collection_name='regions'))
>>> # path_prefix is "regions/:region_id"
>>> # name prefix is "region_"
>>> url_for('region_locations', region_id=13)
'/regions/13/locations'
>>> url_for('region_new_location', region_id=13)
'/regions/13/locations/new'
>>> url_for('region_location', region_id=13, id=60)
'/regions/13/locations/60'
>>> url_for('region_edit_location', region_id=13, id=60)
'/regions/13/locations/60/edit'

Overriding generated path_prefix:

>>> m = Mapper()
>>> m.resource('location', 'locations',
... parent_resource=dict(member_name='region',
... collection_name='regions'),
... path_prefix='areas/:area_id')
>>> # name prefix is "region_"
>>> url_for('region_locations', area_id=51)
'/areas/51/locations'

Overriding generated name_prefix:

>>> m = Mapper()
>>> m.resource('location', 'locations',
... parent_resource=dict(member_name='region',
... collection_name='regions'),
... name_prefix='')
>>> # path_prefix is "regions/:region_id"
>>> url_for('locations', region_id=51)
'/regions/51/locations'

	
routematch(url=None, environ=None)

	Match a URL against against one of the routes contained.

Will return None if no valid match is found, otherwise a
result dict and a route object is returned.

resultdict, route_obj = m.match('/joe/sixpack')

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Routes 1.13 documentation

 	Routes Modules

routes.route – Route

Module Contents

	
class routes.route.Route(name, routepath, **kargs)

	The Route object holds a route recognition and generation
routine.

See Route.__init__ docs for usage.

Initialize a route, with a given routepath for
matching/generation

The set of keyword args will be used as defaults.

Usage:

>>> from routes.base import Route
>>> newroute = Route(None, ':controller/:action/:id')
>>> sorted(newroute.defaults.items())
[('action', 'index'), ('id', None)]
>>> newroute = Route(None, 'date/:year/:month/:day',
... controller="blog", action="view")
>>> newroute = Route(None, 'archives/:page', controller="blog",
... action="by_page", requirements = { 'page':'\d{1,2}' })
>>> newroute.reqs
{'page': '\\d{1,2}'}

Note

Route is generally not called directly, a Mapper instance
connect method should be used to add routes.

	
buildfullreg(clist, include_names=True)

	Build the regexp by iterating through the routelist and
replacing dicts with the appropriate regexp match

	
buildnextreg(path, clist, include_names=True)

	Recursively build our regexp given a path, and a controller
list.

Returns the regular expression string, and two booleans that
can be ignored as they’re only used internally by buildnextreg.

	
done_chars = ('/', ',', ';', '.', '#')

	

	
generate(_ignore_req_list=False, _append_slash=False, **kargs)

	Generate a URL from ourself given a set of keyword arguments

Toss an exception if this
set of keywords would cause a gap in the url.

	
generate_minimized(kargs)

	Generate a minimized version of the URL

	
generate_non_minimized(kargs)

	Generate a non-minimal version of the URL

	
make_full_route()

	Make a full routelist string for use with non-minimized
generation

	
make_unicode(s)

	Transform the given argument into a unicode string.

	
makeregexp(clist, include_names=True)

	Create a regular expression for matching purposes

Note: This MUST be called before match can function properly.

clist should be a list of valid controller strings that can be
matched, for this reason makeregexp should be called by the web
framework after it knows all available controllers that can be
utilized.

include_names indicates whether this should be a match regexp
assigned to itself using regexp grouping names, or if names
should be excluded for use in a single larger regexp to
determine if any routes match

	
match(url, environ=None, sub_domains=False, sub_domains_ignore=None, domain_match='')

	Match a url to our regexp.

While the regexp might match, this operation isn’t
guaranteed as there’s other factors that can cause a match to
fail even though the regexp succeeds (Default that was relied
on wasn’t given, requirement regexp doesn’t pass, etc.).

Therefore the calling function shouldn’t assume this will
return a valid dict, the other possible return is False if a
match doesn’t work out.

	
reserved_keys = ['requirements']

	

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Routes 1.13 documentation

 	Routes Modules

routes.middleware – Routes WSGI Middleware

Module Contents

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Routes 1.13 documentation

 	Routes Modules

routes.util – URL Generator and utility functions

Utility functions for use in templates / controllers

PLEASE NOTE: Many of these functions expect an initialized RequestConfig
object. This is expected to have been initialized for EACH REQUEST by the web
framework.

Module Contents

	
exception routes.util.RoutesException

	Tossed during Route exceptions

	
exception routes.util.MatchException

	Tossed during URL matching exceptions

	
exception routes.util.GenerationException

	Tossed during URL generation exceptions

	
class routes.util.URLGenerator(mapper, environ)

	The URL Generator generates URL’s

It is automatically instantiated by the RoutesMiddleware and put
into the wsgiorg.routing_args tuple accessible as:

url = environ['wsgiorg.routing_args'][0][0]

Or via the routes.url key:

url = environ['routes.url']

The url object may be instantiated outside of a web context for use
in testing, however sub_domain support and fully qualified URL’s
cannot be generated without supplying a dict that must contain the
key HTTP_HOST.

Instantiate the URLGenerator

	mapper

	The mapper object to use when generating routes.

	environ

	The environment dict used in WSGI, alternately, any dict
that contains at least an HTTP_HOST value.

	
current(*args, **kwargs)

	Generate a route that includes params used on the current
request

The arguments for this method are identical to __call__
except that arguments set to None will remove existing route
matches of the same name from the set of arguments used to
construct a URL.

	
routes.util.url_for(*args, **kargs)

	Generates a URL

All keys given to url_for are sent to the Routes Mapper instance for
generation except for:

anchor specified the anchor name to be appened to the path
host overrides the default (current) host if provided
protocol overrides the default (current) protocol if provided
qualified creates the URL with the host/port information as
 needed

The URL is generated based on the rest of the keys. When generating a new
URL, values will be used from the current request’s parameters (if
present). The following rules are used to determine when and how to keep
the current requests parameters:

	If the controller is present and begins with ‘/’, no defaults are used

	If the controller is changed, action is set to ‘index’ unless otherwise
specified

For example, if the current request yielded a dict of
{‘controller’: ‘blog’, ‘action’: ‘view’, ‘id’: 2}, with the standard
‘:controller/:action/:id’ route, you’d get the following results:

url_for(id=4) => '/blog/view/4',
url_for(controller='/admin') => '/admin',
url_for(controller='admin') => '/admin/view/2'
url_for(action='edit') => '/blog/edit/2',
url_for(action='list', id=None) => '/blog/list'

Static and Named Routes

If there is a string present as the first argument, a lookup is done
against the named routes table to see if there’s any matching routes. The
keyword defaults used with static routes will be sent in as GET query
arg’s if a route matches.

If no route by that name is found, the string is assumed to be a raw URL.
Should the raw URL begin with / then appropriate SCRIPT_NAME data will
be added if present, otherwise the string will be used as the url with
keyword args becoming GET query args.

	
routes.util._url_quote(string, encoding)

	A Unicode handling version of urllib.quote.

	
routes.util._str_encode(string, encoding)

	

	
routes.util._screenargs(kargs, mapper, environ, force_explicit=False)

	Private function that takes a dict, and screens it against the current
request dict to determine what the dict should look like that is used.
This is responsible for the requests “memory” of the current.

	
routes.util._subdomain_check(kargs, mapper, environ)

	Screen the kargs for a subdomain and alter it appropriately depending
on the current subdomain or lack therof.

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Routes 1.13 documentation

 Python Module Index

 r

 			

 		
 r	

 	[image: -]
 	
 routes	

 	
 	
 routes.mapper	

 	
 	
 routes.route	

 	
 	
 routes.util	

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Routes 1.13 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | N
 | R
 | S
 | U

_

 	

 	_RequestConfig (class in routes)

 	_screenargs() (in module routes.util)

 	_str_encode() (in module routes.util)

 	

 	_subdomain_check() (in module routes.util)

 	_url_quote() (in module routes.util)

A

 	

 	action() (routes.mapper.SubMapper method)

 	

 	add_actions() (routes.mapper.SubMapper method)

B

 	

 	buildfullreg() (routes.route.Route method)

 	

 	buildnextreg() (routes.route.Route method)

C

 	

 	collection() (routes.mapper.SubMapperParent method)

 	component

 	connect() (routes.mapper.Mapper method)

 	

 	(routes.mapper.SubMapper method)

 	

 	create() (routes.mapper.SubMapper method)

 	create_regs() (routes.mapper.Mapper method)

 	current() (routes.util.URLGenerator method)

D

 	

 	delete() (routes.mapper.SubMapper method)

 	

 	done_chars (routes.route.Route attribute)

E

 	

 	edit() (routes.mapper.SubMapper method)

 	

 	extend() (routes.mapper.Mapper method)

G

 	

 	generate() (routes.mapper.Mapper method)

 	

 	(routes.route.Route method)

 	generate_minimized() (routes.route.Route method)

 	generate_non_minimized() (routes.route.Route method)

 	

 	generation

 	GenerationException

I

 	

 	index() (routes.mapper.SubMapper method)

L

 	

 	link() (routes.mapper.SubMapper method)

 	

 	load_wsgi_environ() (routes._RequestConfig method)

M

 	

 	make_full_route() (routes.route.Route method)

 	make_route() (routes.mapper.Mapper method)

 	make_unicode() (routes.route.Route method)

 	makeregexp() (routes.route.Route method)

 	mapper

 	

 	Mapper (class in routes.mapper)

 	match() (routes.mapper.Mapper method)

 	

 	(routes.route.Route method)

 	MatchException

 	matching

 	minimization

N

 	

 	new() (routes.mapper.SubMapper method)

R

 	

 	redirect() (routes.mapper.Mapper method)

 	request_config() (in module routes)

 	reserved_keys (routes.route.Route attribute)

 	resource() (routes.mapper.Mapper method)

 	route

 	Route (class in routes.route)

 	route path

 	

 	routematch() (routes.mapper.Mapper method)

 	routes (module)

 	routes.mapper (module)

 	routes.route (module)

 	routes.util (module)

 	RoutesException

 	routing variables

S

 	

 	show() (routes.mapper.SubMapper method)

 	SubMapper (class in routes.mapper)

 	

 	submapper() (routes.mapper.SubMapperParent method)

 	SubMapperParent (class in routes.mapper)

U

 	

 	update() (routes.mapper.SubMapper method)

 	url_for() (in module routes.util)

 	

 	URLGenerator (class in routes.util)

 Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Routes 1.13 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_static/down.png

todo.html

 Navigation

 		
 index

 		
 modules |

 		Routes 1.13 documentation »

Routes TODO

Updated 2009-09-07

Planned changes

Refactoring

Backport the Route and Mapper refactorings from Routes-experimental
(formerly called Routes 2). Make the objects more introspection-friendly.
Add a generation dict for named routes; this will help both efficiency and
introspection.

Generating the current URL with a modified query string

When url.current() generates the current URL, it omits the existing query
string. Any keyword args passed override path variables or set new query
parameters. Extracting the existing query string from the request is tedious,
especially if you want to modify some parameters.

A new method url.current_with_query() will generate the current URL with
its query string. Any keyword args add or override query parameters. An
argument with a value None deletes that parameter if it exists, so that it
will not be in the generated URL. There will be no way to change path
variables in the URL.

Positional arguments will be appended to the URL path using urljoin.

Options for generating a fully-qualified URL will be retained. The option
_fragment specifies a URL fragment (“#fragment”).

Failure routes

A method fail for causing 4xx and 5xx errors. This is akin to
.redirect for 3xx errors.

A convenience method gone may also be added for 410 errors. This indicates
that the URL has been deleted and should be removed from bookmarks and
search engines. These will be called “gone routes”.

Chaining to WSGI applications

A connect argument wsgi_app for chaining to another WSGI application.
This would allow a Pylons app to chain to other applications directly in the
route map rather than having to create dummy controllers for them.

Users would have to put “{path_info:.*}” at the end of the path to indicate
which part of the URL should be passed to the application. This raises
multiple issues:

		Users would prefer to specify a URL prefix rather than a URL with a
path_info variable. But this is incompatible with Routes matching.
One could create a special kind of route with a different method, such
as map.chain, but that would raise as many issues as it solves,
such as the need to duplicate all the route options in the second method.

		What about the sub-application’s home page? I.e., PATH_INFO=/ . This
can be handled by changing an empty path_info variable to “/”, but what
if the route does not want a path_info variable in the path?

New route creation method

Add a new mapper method add with a stricter syntax for creating routes.
(The existing connect method will remain at least in all 1.x versions.)

map.add(name, path, variables=None, match=True, requirements=None,
 if_match=None, if_function=None, if_subdomain=None, if_method=None,
 generate_filter=None)

The first argument, name is required. It should be a string name, or
None for unnamed routes.
(This syntax is also allowed by connect for forward compatibility.)
This eliminates the “moving argument” situation where the path argument
changes position depending on whether a name is specified. This will make it
easier to read a list of route definitions aligned vertically, encourage named
routes, and make unnamed routes obvious.

The second argument, path, is unchanged.

The third argument, variables, is for extra variables. These will be
passed as a dict rather than as keyword args. This will make a clear
distinction between variables and route options, and allow options to have more
intuitive names without risk of collision, and without leading underscores.
New applications can use either the {} or dict() syntax; old
applications can simply put dict() around existing keyword args. If no
extra variables are required you can pass an empty dict, None, or omit the
argument.

The fourth argument, match, is true if the route is for both matching and
generation, or false for generation only. The default is true. Whea
converting from connect, change _static=True to match=False.

The remaining options should be set only via keyword arguments because their
positions might change.

The requirements option is unchanged.

if_function corresponds to the function condition in connect. The
value is unchanged.

if_subdomain corresponds to the subdomain condition in connect.
The value is unchanged.

if_method corresponds to the method condition in connect. The
value is unchanged.

generate_filter corresponds to the filter argument to connect.
The value is unchanged.

One problem is that users might expect this syntax in the redirect method
(and fail when it’s added), but redirect can’t be changed due to
backward compatibility. Although some of these options may not make sense for
redirect and failure routes anyway. fail is not so much an issue because
it doesn’t exist yet, so it doesn’t matter if it’s added with the new syntax.

Resource routes

Add a second kind of resource route with the traditional add-modify-delete
paradigm using only GET and POST, where each GET URL displays a form and the
same POST URL processes it. This is non-RESTful but useful in interactive
applications that don’t really need the other methods, and avoids doubling up
dissimilar behavior onto the same URL. The method should also have add=True,
edit=True, delete=True arguments to disable services which will not be
implemented (e.g., resources that can’t be deleted, or are added outside the
web interface). This would be under a different method, hopefully called
something better than .resource2.

Slimmed-down package

Make a slimmed-down version of Routes without deprecated features. This can
be kept as a separate branch or repository, and uploaded to PyPI under Routes
with a different filename; e.g., Routes-NC.

Under consideration

Route group

When adding a group of routes such as a resource, keep the group identity for
introspection. Currently the routes are added individually and lose their
groupness. This could be done with a RouteGroup collection in the matchlist
which delegates to its sub-routes. This would not apply to named generation,
which needs a single dict of route names.

Required variables

A mapper constructor arg listing the variables all
routes must have in their path or extra variables. Defining a route without
these variables would raise an error. Intended for “controller” and “action”
variables in frameworks like Pylons. However, there are cases where
normally-required variables would be omitted, such as chaining to another WSGI
application (in which case “controller” would be necessary but not “action”).
Of course, the route can always define action=None.

 © Copyright 2010-2012, Ben Bangert, Mike Orr.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

